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Abstract—StackOverflow (SO), the most popular community
Q&A site rewards answerers with reputation scores to encourage
answers from volunteer participants. However, irrespective of the
difficulty of a question, the contributor of an accepted answer is
awarded with the same ‘reputation’ score, which may demotivate
an user’s additional efforts to answer a difficult question. To
facilitate a question difficulty aware rewarding system, this
study proposes SOQDE (Stack Overflow Question Difficulty
Estimation), a supervised learning based Question difficulty
estimation model for the StackOverflow. To design SOQDE, we
randomly selected 936 questions from a SO datadump exported
during September 2017. Two of the authors independently labeled
those questions into three categories (basic, intermediate, or
advanced), where conflicting labels were resolved through tie-
breaking votes from a third author. We performed an empirical
study to determine how the difficulty of a question impacts its
outcomes, such as number of votes, resolution time, and number
of votes. Our results suggest that the answers of a basic question
receive more votes and therefore would generate more reputation
points for an answerer. Due to less incentives relative to efforts
spent by an answerer, intermediate and advanced questions
encounter significantly more delays than the basic questions,
which further validates the need of a model like SOQDE. To build
our model, we have identified textual and contextual features of
a question and divided them into two categories—pre-hoc and
post-hoc features. We observed a model based on Random Forest
achieving the highest mean accuracy (67.6%), using only answer-
independent pre-hoc features. Accommodating answer-dependent
post-hoc features, we were able to improve the mean accuracy
of our model to 75.2%.

Index Terms—StackOverflow, Prediction model, Question Dif-
ficulty, Reputation

I. INTRODUCTION

Stack Overflow (SO) is the most popular community Q/A

site among the programmers. Since more than 92% of the

questions are answered in a median time of 11 minutes [1],

SO has become the go-to place for the programmers to find

solutions for technical difficulties. Programmers irrespective

of their expertise levels, from novice learner to expert profes-

sionals, participate in constructive discussions to generate one

or more solutions for each posted issue. The user posting a

question can mark only one solution as “accepted” . Apart

from the questioner, other registered users of the SO can

upvote or downvote a question or answer to indicate its quality

(e.g., research effort, clarity, and usefulness) so that clear and

useful answers receive more upvotes and vice-versa. However,

SO awards the same number of reputation points (i.e., 10) for

each accepted answer irrespective of the difficulty level of

the question, although an ‘Advanced’ question may require

significantly more efforts from an answerer than a ‘Basic’

question. Since the number of beginner or intermediate level

programmers is larger than the number of experts, a ‘Basic’

question is likely to receive more views than an ‘Advanced’

question. Hence, the answer to a ‘Basic’ question may receive

more upvotes, points and consequently yield more reputation

scores to the answerer. On the other hand the occurrence of

a difficult issue may be less frequent among the programmers

to generate lower number of views than a basic question.

Therefore, the current reputation model of SO is biased

towards rewarding the answerer of a basic question with more

points, although the solution of a basic question may require

significantly less efforts than the difficult ones. Hence, the

answerers of SO may find less incentives to spend the extra

efforts to answer difficult questions, which may eventually

cause many difficult questions remaining unanswered. More-

over, SO awards various levels of privileges to its users based

on their reputations and badges. Since the users gains access

to various SO community services based on their reputation

scores 1, a flat awarding system that ignores the difficulty

level of the questions may prevent expert users focusing on

difficulty questions from accessing those services.

To reduce its bias towards the easy questions, SO may

introduce variable rewards to the answers based on the dif-

ficulty level of a question. This model may motivate SO users

to spend potential extra efforts to answer difficult questions.

Moreover, SO may introduce new badges or privileges to

motivate the users who answer difficult questions. Such a

reward model may not only reduce the resolution times for

difficult questions but also reduce the number of unanswered

questions. However, a this variable reward model would re-

1https://stackoverflow.com/help/whats-reputation
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quire a reliable question difficulty estimation (QDE) technique,

which currently do not exist. Such a QDE model may be

also helpful to route difficult questions to expert users (i.e.,

reputation point) to reduce resolution intervals for difficult

questions.

Prior research on SO have investigated various areas such

as: answer quality estimation, user expertise or rating measure-

ment, and question routing. [2], [3]. However, the problem of

QDE i.e., categorizing SO questions based on its’ difficulty

levels has received little attention. Liu et al. [4] was the

first to propose a competition-based model to estimate the

difficulty of a question by exploiting pairwise comparisons

of users and questions. A subsequent work by Wang et al. [5]

improved the Liu et al.’s model by incorporating the textual

descriptions of the questions. However the dependence on

the answers to predict the difficulty of a question limit the

applicability of those two models [4], [5]. Hence, this research

aims to develop, SOQDE (StackOverflow Question Difficulty

Estimation), a reliable model to automatically determine the

difficulty level of SO questions. This model will ensure well-

deserved additional reputation scores to the users who ask

or answer difficult questions and reduce the occurrences of

their extra efforts going unnoticed. We aim to develop two

supervised learning based models: i) a pre-hoc model that does

not depend on the characteristics of the answers, and ii) a post-

hoc model that leverages the answers of a question to improve

its accuracies over a pre-hoc model.

On this goal, we manually labeled randomly selected 936

SO questions on Java String, Inheritance and Multi-threading.

Two of the authors independently labeled each of the questions

as ‘Basic’, ‘Intermediate’ or ‘Advanced’ based on a pre-

defined rubrics. We measured inter-rater reliablitty of the

manual labeling process with Cohen’s Kappa, which was

measured as κ = 0.73. Conflicting labels were later resolved

by a tie-breaking vote from a third author. We classified

features selected from each question into two categories.

• Pre-hoc: Features those are available immediately after

a question has been posted on the SO.

• Post-hoc: Features those are available only after a ac-

cepted solution has been posted for a SO question.

We uses this dataset to train and validate supervised learning

models using 10 popular algorithms. The best performing

model (using Random Forest) during our 10-fold cross val-

idations achieves 67.1% mean accuracy with pre-hoc features

and 75.2% mean accuracy with both pre-hoc and post-hoc

features. To encourage replication of this study, we have made

the dataset used in this study publicly available at: 2.

In summary, the primary contributions of this paper include:

• We have manually labeled an validated the difficulty

levels of of 936 SO questions.

• We have empirically investigated how the difficulty levels

of SO questions may impact its’ resolution times, view

counts, and number of votes.

2https://goo.gl/rgYp9i

• We have applied information-gain based feature selection

models to identify three pre-hoc and seven post-hoc

features that are useful to estimate the difficulties of SO

questions.

• We have developed SOQDE, a supervised learning based

model that achieves satisfactory performance with only

pre-hoc features and is improved further with post-hoc

features. Although the pre-hoc model is less accurate than

the post-hoc model, it can be used as soon as a question

has been posted on the SO. Our SOQDE model can be

useful not only to introduce a variable reward system

based on question difficulty but also assist the routing of

a question based on its difficulty level.

• We have empirically investigated 10 popular supervised

learning algorithms that may be useful for the QDE

context.

The remained of this paper is organized as following.

Section II provides an empirical investigation of the difficulties

of SO questions. Section III details our research methodology.

Section IV evaluates the performance of different models on

our training dataset. Section V, discusses the implications of

this study. Section VI analyzes the threats to validity of our

study. Section VII, provides an overview of the related prior

research on SO. Finally, Section VIII concludes the paper.

II. EMPIRICAL INVESTIGATION OF QUESTIONS’

DIFFICULTIES

In this section, we discuss our approaches for dataset selec-

tion, manual labeling process and an empirical investigation

of the difficulties of SO questions.

A. Harnessing Stack Overflow Data
In this study, we selected SO questions on Java, since it

is one of the most popular programming languages as of

2018. According to a survey [6] conducted by Stack Overflow,

41.6% back-end developers and 54.2% mobile developers

prefer Java making it as one of the top three languages used by

programmers. Java is also the most popular language among

students, with 51.1% of the students using it. It is also the

second most popular technology on Stack Overflow. In this

study, we randomly selected, total 936 SO questions (i.e., 312

questions from each of the following on three Java topics)

Strings, Threads, and Inheritance). We selected these three

topics since they are among the most popular Java topics on

SO.
For the selection process, we used the SO data dump [7]

published during September 2017. We imported the data dump

in to a MySQL database to facilitate an user friendly query

interface. Although, we only considered questions regarding

three popular Java (i.e., Strings, Threads and Inheritance), our

dataset generation methodology followed in our work should

work for any topics from SO.

B. Training Set Generation
To manually label the questions, we had discussion sessions

to develop a rubrics to rate the difficulty of each questions into

one of the following three categories:
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1) Basic: A Basic question can be answered with the help

of beginner level books or basic API documentation.

Basic questions also include the simple problem-solving

questions and comparison of basic functions of two

different languages. We considered it from the viewpoint

of learners as they usually start with Basic questions and

try to solve them going through the text/reference books

and/or API documentation.

2) Intermediate: An Intermediate question requires a rel-

atively deeper understanding of the language to answer.

When a beginner goes through all the problems of Basic

questions, the next thing that will come to his/her mind

is how to solve those problems efficiently considering

the time complexity or memory usage of different.

3) Advanced: An Advanced question usually deals with

hard problems where the solution needs in-depth pro-

gramming knowledge or logical thinking. We also con-

sidered questions that require the understanding of in-

ternal language structure or compiler as advanced.

Table I provides an overview of our rubrics and example

questions for each of the three categories. Using these rules

as guidelines, authors Adnan and Dipto independently labeled

each of the 936 selected questions. During this labeling

process, they rated each question solely based its title and

description. we used Cohen’s kappa coefficient [8] to measure

the inter-rater agreement with is κ = 0.738, indicating a

substantial agreement3. The disagreements between the two

coders was resolved using a tie-breaking vote from the author

Anindya. Based on these steps, we labeled the 936 selected

questions to generate our training dataset. Among these 936

questions, 598 (63.88%) questions were labeled as basics, 244

(26.06%) questions were intermediates, and the remaining 94

(10.04%) questions were advanced.

C. Empirical Investigation

Figure 1 shows the average number of votes received by

questions from various difficulties. These results indicate that

accepted answers from both Basic level and Intermediate level

questions received significantly higher votes than the answers

of Advanced level questions. It further validates our point

that users have less motivation to take the toil of answering

Advanced level questions. Hence, Advanced level questions

are likely to take longer times to get an acceptable answer.

Figure 2 supports that claim as the average resolution time for

questions grows with its’ difficulty level, especially from Inter-
mediate to Advanced level of questions. On average, Advanced

questions require 10 times longer than the Intermediates to get

an answer.

Similarly, Figure 3 shows that Basic and Intermediate
questions generate significantly higher number of views than

the Advanced questions. Therefore, even the non-accepted

answers of the Basic questions get more attentions as well as

generate higher reputation scores for an answerer. As a result,

3Landis and Koch [9] suggest interpreting Kappa values < 0 as no
agreement, 0-0.20 as slight, 0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80
as substantial, and 0.81-1.0 as almost perfect agreement.
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answering Basic questions not only saves a lot of efforts from

a answerer, but also those questions provide higher chances

of generating reputation scores on the SO. These results

justifies the motivation of designing a question difficulty aware

rewarding system for the SO and further validates the necessity

of a QDE model.
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TABLE I
CHARACTERISTICS OF QUESTIONS OF DIFFERENT CATEGORIES

Category Rules Examples SO Questions

Basic

Questions that can be answered with simple built-in functions/API documentation/be-
ginner level books.

Adding a space after a specific character in
a string

Questions with comparison between constructs/functions of two languages (for better
understanding of the language or for learning a new language)

Get integer difference between string just
like strcmp

Questions with simple problem-solving. String Merge Sort Implementation

Intermediate

Questions that require a relatively deeper understanding of the language to answer, for
example Why type questions.

(Resolved) Why are two threads calculating
slower than one?

Questions where the questioner knows about the answer/solution of the question/problem
but wants to know more efficient answer/solution.

Algorithm to find the length of longest
suffix between a String and a prefix of the
String

Questions related to time complexity, memory usage or other different resource usages
of a system/solution.

Finding the Number of Times an Expression
Occurs in a String Continuously and Non
Continuously

Questions that require answers with conceptual reasoning/underlying philosophy of any
programming construct/API or syntax/design principle.

@Autowired doesn’t work if applied to a
bean shared between two threads

Advanced

Questions that deal with hard/critical problems where solution needs in-depth program-
ming knowledge or conceptual/logical thinking.

Java - Multiple selectors in multiple threads
for nonblocking sockets

Questions that require advanced in-depth knowledge of internal language structure. Default method returns true for a while, and
then returns false? (Possible JVM bug)

Questions that deals with infrequently/rarely used framework/API. Determining which locks are most con-
tended?

III. METHODOLOGY

To estimate the difficulty level of SO questions, we pre-

processed our training dataset and selected various textual

and contextual features of each question in our dataset. In

this section, we briefly describe the preprocessing and feature

selection processes.

A. Preprocessing

1) Tokenization and stemming: We separated the body of

the questions. We used a tokenizer to parse each text into a

list of words. Finally, we applied the Snowball Stemmer [10]

to convert each word to its stem.

2) Stop-word removal: Many stop-words (usually non-

semantic words such as articles, prepositions, conjunctions,

and pronouns) do not play a significant role to express the

difficulty level of a question. Popular natural language pro-

cessing tools such as NLTK [11] and Stanford CoreNLP [12]

provide lists of stop-words. We leverage the stop-word list

from CoreNLP to exclude stopwords from our dataset.

3) Code snippet removal: Many of the SO questions have

code snippets in their body. Code snippets usually consists

of identifiers and keywords. The users do not often use the

same words to represent the same thing. This is known as the

vocabulary problem [13]. For this reason, SOQDE removes

these code snippets. We parsed the body of the questions and

removed all the code snippets with < code > tag. We did

not require any preprocessing for punctuation marks as the

tokenization step excludes those.

4) Feature vector generation: We computed TF-IDF (Term

Frequency - Inverse Document Frequency) [14] to extract the

features for classification. To reduce potential overfitting, we

excluded words that are present in less than three questions.

We used WEKA 4 to generate feature vectors.

B. Feature Selection

After generating the training dataset, we derive some fea-

tures to be used in the supervised learning process. To avoid

overfitting we turned continuous variable features such as

fastest response time, median response time, and question

body into categorical ones and put those into four bins or

intervals: low, medium, high, very high. Following the guide-

lines to select features offered by Yang et al. [15] and Joachims

et al. [16], we excluded features that are either redundant or

irrelevant and can thus be removed without incurring a signif-

icant loss of information [17]. This feature selection method

also helps reducing over-fitting and memory requirement of

the classifier. Moreover, it will give an estimation of the

importance of each feature for our model. We used information

gain [15] measure to rank the features. Information gain is

a measure of the reduction in entropy of the class variable

(Labeling) after the value for the feature is observed and is

widely used for feature selection.

Table II presents the features we used, their nature with

respect to received answers, ranking according to information

gain, and explanations why it may be useful to predict question

difficulty. To select features, we used the select attribute [18],

[19] feature from WEKA.

4http://www.cs.waikato.ac.nz/ml/weka/
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TABLE II
LIST OF FEATURES WITH A RATIONALE FOR EACH FEATURE’S INCLUSION

Feature Name Pre-hoc or Post-
hoc

Rank Rationale

Classification Result
with tf-idf

Pre-hoc 1 Words in the document with a high tf-idf score occur frequently in the document
and provide the most information about that specific document.

Question Body Size Pre-hoc 4 Basic questions can be very straight-forward and concise. On the other hand,
Intermediate and Advanced questions need description of the background
knowledge that the question asker has and the context of the problem. This
characteristics may come helpful in identifying question difficulty.

Reputation of the
Questioner

Pre-hoc 8 We can expect that expert users, i.e. the users with high reputation are likely to
ask Advanced questions whereas programmers of a less expertise and reputation
are probable to ask Basic or Intermediate questions.

Fastest Response time
to the Question

Post-hoc 2 If a question is basic it is likely to receive the first answer to it very quickly
whereas if a question is Advanced one it is likely to receive its first answer
after a longer time comparing with the basic questions.

Median Response
time to the question

Post-hoc 3 Questions with fastest answer may favor those questions which serve a small
purpose that last for a short period of time. The questions that represent a
longer period of discussion with a good number of answers as responses and
a reasonable median time among those answers indicate their insightfulness
which is helpful to identify the Intermediate and Advanced questions.

Favorite Count of the
question

Post-hoc 5 Favorite counts number shown on a question indicates how many community
users marked it as ’favorite’ under their profile that lets one find it easily later.

Score of the Question Post-hoc 6 The score of the question implies the difference between upvotes and downvotes
of a question indicating the extent of research effort, clarity and usefulness of
the question which is often absent in new users. If we consider that new users
in Stack Overflow are likely to be inexperienced then the questions that lacks
in clarity and research effort, are also likely to be basic questions.

View Count of the
Question

Post-hoc 6 the number of highly skilled programmers is likely to be less than the number of
programmers in Basic or Intermediate level. Hence, the number of questions
aroused by the advanced programmers are less likely to be searched by the
programmers with basic skill set. Therefore, the Advanced questions should
receive fewer views than the basic questions do.

Comment Count of
the Question

Post-hoc 9 Users’ interaction under a question in the comment section shows users’ interest
to discuss on the problem. These also show the usefulness of a question and
may bear information about the question’s difficulty.

Answer Count of the
Question

Post-hoc 10 Generality of a topic can be estimated from the answer count on a question. If
a question receives many answers it is likely to be related to a basic concept.

IV. PERFORMANCE EVALUATION

In this section, we empirically validate our SOQDE model

based on 10-Fold cross validations of ten commonly used

supervised learning algorithms.

After data preprocessing data and feature selection, we

noticed our data as imbalanced with almost two-third question

(63.88%) belonging to the basic category. Therefore, we ap-

plied the SMOTE [20] oversampling technique to increase the

ratios of Intermediate and Advanced questions. Next, we have

applied ten commonly used supervised learning algorithms

that are commonly used for text classification in software

engineering. Our list of algorithms include:

1) K-Nearest Neighbour (KNN) [21];

2) Random Subspace [22];

3) Bayesian Network [23];

4) Naive Bayes [24];

5) AdaBoost with Decision Stump [25];

6) Decision Tree [26];

7) Random Forest [27];

8) LogitBoost [28];

9) Support Vector Machines (SVM) [29]; and

10) Simple Logistic Regression [30].

We validated each of the algorithms using 10-fold cross-

validations, where the dataset was randomly divided into 10

groups and each of the ten groups was used as test dataset

once, while the remaining nine groups were used to train the

classifier. Each of the 10-fold cross-validation was repeated

100 times and the mean performances of the models were

computed. We also tuned the hyper-parameter of the classifiers

to avoid overfitting and ensure better generalization. The

primary goal of parameter tuning is to reduce the difference

between cross-validation error and separate test set error. In the
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TABLE III
PERFORMANCE OF DIFFERENT CLASSIFIERS USING ONLY TEXTUAL FEATURES

Classifier Basic Intermediate Advanced Mean AccuracyPrecision Recall F-measure Precision Recall F-measure Precision Recall F-measure
Adaboost 0.642 0.983 0.777 0.000 0.000 0.000 0.150 0.032 0.052 0.631

Bayesian Network 0.641 0.990 0.778 0.000 0.000 0.000 0.083 0.011 0.019 0.634

KNN 0.639 0.824 0.720 0.247 0.160 0.195 0.429 0.032 0.059 0.572

Decision Tree 0.646 0.821 0.723 0.257 0.144 0.185 0.300 0.126 0.178 0.574

Logitboost 0.670 0.925 0.777 0.380 0.144 0.209 0.316 0.063 0.105 0.634

Naive-Bayes 0.701 0.478 0.569 0.256 0.276 0.265 0.184 0.516 0.271 0.429

Random Forest 0.652 0.977 0.782 0.429 0.062 0.108 0.600 0.032 0.060 0.643
Random Subspace 0.639 0.992 0.777 0.000 0.000 0.000 0.286 0.021 0.039 0.636

Simple Logistic 0.645 0.955 0.770 0.310 0.053 0.091 0.444 0.042 0.077 0.628

SVM 0.679 0.753 0.714 0.289 0.239 0.261 0.222 0.168 0.192 0.560

TABLE IV
PERFORMANCE OF DIFFERENT CLASSIFIERS ON PRE-HOC FEATURES

Classifier Basic Intermediate Advanced Mean AccuracyPrecision Recall F-measure Precision Recall F-measure Precision Recall F-measure
Adaboost 0.498 0.610 0.548 0.000 0.000 0.000 0.391 0.753 0.515 0.445

Bayesian Network 0.582 0.686 0.630 0.525 0.348 0.418 0.582 0.671 0.623 0.570

KNN 0.644 0.637 0.640 0.613 0.570 0.591 0.726 0.803 0.763 0.658

Decision Tree 0.607 0.624 0.616 0.578 0.521 0.548 0.728 0.789 0.758 0.633

Logitboost 0.568 0.699 0.627 0.514 0.342 0.410 0.600 0.639 0.619 0.565

Naive-Bayes 0.582 0.686 0.630 0.525 0.348 0.418 0.582 0.671 0.623 0.570

Random Forest 0.650 0.659 0.654 0.620 0.584 0.602 0.760 0.800 0.779 0.671
Random Subspace 0.583 0.763 0.661 0.621 0.391 0.480 0.691 0.684 0.688 0.619

Simple Logistic 0.576 0.699 0.631 0.532 0.364 0.432 0.625 0.666 0.645 0.579

SVM 0.561 0.719 0.630 0.508 0.329 0.400 0.561 0.719 0.630 0.572

TABLE V
POST-HOC CLASSIFIERS’ RESULTS

Classifier Basic Intermediate Advanced Mean AccuracyPrecision Recall F-measure Precision Recall F-measure Precision Recall F-measure
Adaboost 0.497 0.610 0.548 0.000 0.000 0.000 0.392 0.753 0.515 0.445

Bayesian Network 0.590 0.694 0.638 0.556 0.389 0.458 0.613 0.679 0.644 0.589

KNN 0.769 0.624 0.689 0.675 0.765 0.717 0.771 0.868 0.817 0.734

Decision Tree 0.642 0.669 0.655 0.611 0.574 0.592 0.727 0.734 0.730 0.654

Logitboost 0.594 0.697 0.642 0.546 0.426 0.479 0.637 0.642 0.640 0.593

Naive-Bayes 0.589 0.694 0.637 0.554 0.383 0.453 0.608 0.679 0.642 0.587

Random Forest 0.731 0.746 0.738 0.710 0.706 0.708 0.841 0.821 0.831 0.752
Random Subspace 0.635 0.776 0.698 0.658 0.496 0.566 0.774 0.747 0.760 0.676

Simple Logistic 0.606 0.689 0.645 0.560 0.444 0.495 0.663 0.695 0.679 0.609

SVM 0.586 0.699 0.638 0.556 0.418 0.477 0.658 0.668 0.663 0.598
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following, we briefly discuss our parameter tuning for different

algorithms.

1) For Adaboost classification algorithm, we used 100

estimators and decision stump as base classifier.

2) We used α = 0.5 as simple estimator and hill-climbing
as local search algorithm for Bayes Network.

3) We applied KNN) with K = 5. Its performance decreases

with increased number of neighbors.

4) For Decision Tree, confidence factor = 0.25 was chosen.

5) We applied LogitBoost with shrinkage = 0.3. The model

overfits if we increase the shrinkage further.

6) For Random Forest, we used 100 estimators and re-

stricted the maximum depth of the trees to 50. We did

not observe any notable improvement with increased

number of estimators or depths.

7) We applied SVM with ε = 1e − 12 and tolerance

parameter = 0.001.

8) We applied Simple Logistic with heuristic stop = 50,

the heuristic for greedy stopping while cross-validating

the number of LogitBoost iterations is enabled.

9) For Random Subspace, we used subspace size = 0.5

and Reptree as base classifier.

We have performed classifier selection at first on feature

vector generated with TF-IDF. The performance of different

classifiers on ITF-IDF is shown on Table III, which indicates

that the random forest based models achieved the highest mean

accuracies. After that, we used the classification result of this

model as a feature for next steps of classifications as shown

in Table II.
Table IV and Table V show accuracy, precision, recall, and

F-measure for all the classifiers mentioned above using 10-fold

cross validation with pre-hoc features and post-hoc features

respectively.
We take mean accuracy as the dominant performance metric.

After comparing results for all the classifier mentioned above

with 10-fold cross validation, we found that Random Forest

classifier achieved the highest mean accuracy with both pre-

hoc features and post features, i.e., 0.671 and 0.752 respec-

tively. For Random Forest, mean Precision, Recall and F-

measures were recorded as 0.669, 0.671, and 0.669. For pre-

hoc features and 0.753, 0.752, and 0.752 for post-hoc features,

respectively. Therefore, we consider Random Forest based

models as the best performing model for SOQDE.

V. IMPLICATIONS OF THE STUDY

This study on the difficulty level categorization has several

implications to the users of Stack Overflow such as:

1) Benefiting the users’ teaching material collection from

Stack Overflow.

2) Benefiting the users’ learning process from Stack Over-

flow.

3) Providing helpful code examples to learners.

4) Routing questions to generate better answers.

5) Introducing a question difficulty aware variable reward

system.

The following subsections details these potential applications.

A. Benefiting the users’ teaching material collection from
Stack Overflow

Nowadays, teachers/instructors of programming courses of-

ten take examples from SO posts to demonstrate real-world

issues and sometimes for practice exercises. The level of

students varies from sophomore year to graduate level. Hence,

it is very useful to have a classification of posts/discussions

that match the level of the target audience. Manually identify-

ing them matching desired difficulty level is cumbersome as

numerous entries are being posted in every minute and few

of them are of a particular level, e.g. Advanced. Thus, the

developed SOQDE tool is expected to benefit teachers select

suitable examples more conveniently and appropriately.

B. Benefiting the users’ learning process from Stack Overflow

The users on SO are of different expertise levels. Their grasp

of a particular topic may vary. While learning a particular thing

from SO, s/he may be confused about the topics and solutions

available to the specific problem the user is facing. There may

exist many solutions to a problem that troubles a user. Efficient

and better solution may require the user to have knowledge

on advanced topics whereas the same problem may be solved

with basic concepts in a less efficient and less appreciated way.

If a user has to use a significant amount of time in identifying

SO posts that match his/her level, s/he may get discouraged

and the learning process is hampered. Therefore categorizing

the questions according to their difficulty levels may help a

lot to improve the learning practice of the users of SO.

C. Providing helpful code examples to learners

People often prefer to take help through viewing code

examples especially in case of learning how to use new

APIs or a new language [31]. Often basic questions on SO

are accompanied by some code snippet or code examples.

The person who is attempting to answer the question often

mentions a single API along with a line of code or a block of

code in order to simplify the use of that API. This can be very

helpful for the people who like to rely upon code examples

while learning.

D. Routing questions to generate better answers

When a new question is asked in Stack Overflow, it is

routed to some potential users who are experts on the topic so

that answers are posted quickly. On the common topics, there

are many users capable of answering, however, with different

depths of knowledge. The users’ capability is represented by

his/her rating. If the difficulty level of a question is identified,

it may be routed to the user with a rating that is supposed to

match the difficulty level of the question. Consequently, ex-

perts will be relieved of dealing with trivial/simple questions.

On the other hand, new users may be encouraged by being

asked to reply to questions matching his/her level.
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E. Introducing a question difficulty aware variable reward
system

As answering Basic questions is eventually equal or more

rewarding than answering Intermediate or Advanced ones,

users of SO community are likely to get less incentives

to answer Non-basic (Intermediate or Advanced) questions

putting some extra efforts. To motivate users of SO community

to answer more difficult questions, SO may introduce a vari-

able reward based system considering difficulty level of the

question concerned. SO may also introduce new badges for

answering Intermediate or Advanced questions. Consequently,

response time of difficult question is likely to be reduced and

overall impact of SO on desired audience will increase. To

implement such smart mechanism, SOQDE is expected to be

of use.

VI. THREATS TO VALIDITY

In this empirical study, there can be several threats that can

challenge the validity of this study. There are four common

threats to validity [32]. They are:

1) Internal validity

2) External validity

3) Construct validity

4) Conclusion validity

All these are discussed in the following subsections.

A. Internal validity

The primary threat to internal validity is choosing a pro-

gramming language and tags. We chose to work with a

dataset about Java Strings, Inheritance and Threads. Though

questions about these topics or having Java as tags with the

corresponding questions are very much common on Stack

Overflow, they do not necessarily cover all the possible topics

or questions available here. However, characteristics related to

the difficulty of a topic may not be related to the language or

topic highly. We think this threat is minimal for the following

reasons:

• Java, being a very much popular, vast, and mature pro-

gramming language, covers a lot of things common to

other programming languages.

• Java unifies many of the programming philosophies such

as object orientation and structured programming which

brings many modern concepts under the same hood.

• We did not use any feature specific to Java to train our

models.

Therefore, we believe that our internal threats to validity are

not a matter of concern.

B. External validity

The consideration of difficulty levels of programming re-

lated questions may vary greatly from person to person

according to their expertise level. However, our dataset was

labeled by the first two authors who are computer science

and engineering graduates who have hands-on experience

in application development with Java. Tie-breaking of their

conflicts was done by the third author who is a faculty member

having experience of teaching Java. Hence, we may say that

the annotation of the questions being biased by one’s expertise

level is minimal. Another threat may come from the impact of

age of the raters. According to a survey conducted by Stack

Overflow [6], we know that average developers’ age is 29.6

years with a median of 27 years. Figure 4 shows the graphical

representation of Stack Overflow survey participants’ age. In

our case, persons who labeled the dataset initially are aged

between 22 to 36 years with an average of 30 years which is

very close to that of the general users of Stack Overflow. This

similarity implies that our methodology is not vulnerable to

possible external threats.

Fig. 4. Developers’ profile: Age [Source: http://StackOverflow.com/insights/
survey/2016]

C. Construct validity

In absence of any dataset available for our context, we

had to build our own using the standard methodology as

discussed in Section III. In short, we had the data labeled by

the first two authors independently. The third author settled

the disagreements independently. Thus, the preparation of the

dataset is not likely to suffer from any bias. This dataset

consisting of 936 questions performed well under different

classifiers with accuracy up to 75.2% considering post-hoc

features and 67.1% considering pre-hoc features only. We used

10-fold-cross validation while validating the performance. The

first two authors had a high agreement in their independent

labeling (Cohen’s Kappa = 0.738). In case of disagreement, it

was settled by the third author. This kind of majority voting

for data labeling is a standard technique if there is no existing

dataset for the problem scenario. Therefore, we can expect that

there is not construct validity concern in our experiment.

D. Conclusion validity

The used dataset was collected from SO data-dump from

late 2017. This dataset reflects the current trends of SO very

well. The size of our dataset is close to the sizes of other

studies recently done on SO data using manual labeling. For

the imbalanced nature of dataset, we used oversampling using

SMOTE [20] to remove any majority bias. We have adopted
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widely used implementations of the commonly used machine

learning techniques for this study. Therefore, our study does

not have any serious threat to conclusion validity.

VII. RELATED WORKS

In the learning process, the learners of programming lan-

guages or even programmers take resort to tutorials and Q/A

sites. The number of such kind of existing tutorials and Q/A

sites is pretty huge. Among the technical tutorial and Q/A

sites, Code Project and Stack Overflow are noteworthy. To

analyze the interactions in these sites and to design make them

more helpful to users, the researchers are carrying out various

studies on the usage pattern and different characteristics of

learning. Some studies such as [33] have tried to correlate the

search trends on Google and Stack Overflow and show that

technical terms searched and asked have strong correlation

over time. Searching and asking for newer, specific technical

terms have a stronger correlation, compared with older, general

technical terms.

When the official documentation of any product is sparse or

even non-existent, answers on Stack Overflow becomes a sub-

stitute for official documentation. To measure the interest of

users on a different topic, research has been conducted on what

kinds of questions are asked on Q/A websites for program-

mers, which questions are answered, and how best answers

are selected in [34]. It found several categories of questions

that are asked on Stack Overflow frequently. This study found

that “How-to” questions are asked most frequently. Other

categories of questions asked on Stack Overflow include about

discrepancy, development environment, error, conceptual, code

review, and novice inquiries. Another study [31] discusses

the use of code examples while learning a new programming

language or API. It shows that programmers often depend on

code examples to support their learning.

A good amount of effort has been put to investigate the

contents of questions on Stack Overflow. Arora et al. [35] aim

to flag questions good or bad on Stack Overflow. Basically

what they did is to assess if a question asked conforms to

the standard of Stack Overflow. If a question matches the

expected standard, it is marked as good and bad otherwise.

Jiarpakdee et al. [36] discover the relation between question

quality and effective features of that question. Here, by say-

ing effective features, they mean positive sentiment, negative

sentiment and politeness. They also used textual, community-

based information extracted from the dataset they used. They

found that though effective features alone cannot build a model

good enough to predict question quality, one of the mentioned

effective features - politeness ranking second important feature

of the model, as a group can improve the performance of a

model to identify the question quality. Baltadzhieva et al. [37]

studied upon the individual terms or words used in writing the

title and body of the question and studied to which extent do

these terms can help to predict the probability of a question to

receive an answer and the score that the question may have.

Studying two indicators of question quality: question score and

number of answers on that questions they came to a decision

that their model performed better when terms were included.

A study [38] on Stack Overflow tries to augment API

documentation from the insights in Stack Overflow posts. They

applied a novel supervised machine learning approach SISE

that uses the sentences as features. This study shows a way

to consider Stack Overflow metadata and parts-of-speech tags

to significantly improve extraction processes. Another study

by Toba et al. [39] studies on the quality of the answers

provided by the users on CQA sites. They proposed a hybrid

hierarchy-of-classifiers framework to model QA pair with a

view to identifying high-quality answers. They also found out

a number of novel features to distinguish answers’ quality.

Rocha et al. [40] showed the feasibility of automatically

generated tutorials. They developed and evaluated several

methods to generate tutorials for APIs with the contents of

Stack Overflow. They also organized those contents according

to their complexity level that had better result regarding the

generation methodology.

Competition based difficulty level estimation of the ques-

tions was done in [4]. This study compares users and ques-

tions. They adopted some assumptions. They assumed that the

difficulty level of a question is higher than that of the expertise

level of the user who asks the question in general. They also

assumed that the user who provides the accepted answer has

a higher expertise level than the user who posted the question.

This is a hard assumption. Also, possible absence of answers

at the early stage after a question is posted is beyond the

applicability of this approach. An improvement over this is

proposed in [5]. They added a textual description along with

the user-question comparison.

Gamification incentives for badge recommendation have

been discussed in [41]. This study develops a badge recom-

mendation model based on item-based collaborative filtering

which recommends the next achievable badges to users. The

model calculates the correlation between unachieved badges

and users previously awarded badges. They evaluated their

model with the data from Stack Overflow question-answering

website to examine if the recommendation model can recom-

mend proper badges in an existing real community. However,

they did not consider the difficulty of questions to recommend

the badges.

VIII. CONCLUSION

In this paper we have presented SOQDE, a supervised

learning based model to estimate the difficulty level of pro-

gramming questions in Q/A sites such as Stack Overflow that

can work both with and without submitted answers. We have

used supervised learning techniques by developing a standard

annotated dataset, tried different classifiers, and selected the

best one in terms of accuracy and F-measure. The measured

difficulty level of questions is likely to help design a smart

reward model for the users that would consider the difficulty

level of question. Thus it will attract the users answer difficult

questions putting extra effort and get rewarded for it. Also,
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estimation of the difficulty level of the questions will aid

question routing by improving response time of the questions.
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